Calculating rotated points of a rectangle

Hello, I am using vertex buffers to draw this at the moment, but for some reason after the program is launched, the thing that is being drawn appears in the top left corner (close to 0,0) when it is supposed to be at (100,100). The sprite is being rotated around a point Center (a Vector 2), and the Center is being set to (X + (width of sprite)/2) and (Y + (height of sprite/2)) every time the x or y of the sprite is being changed. When I made it so that the rotation (which up until this point had been set at 0) increased every frame, the sprite seemed to rotate around a point close to (0,0). Is there a way I am calculating the new position wrong? Ty for any help!

Position is a Vector 3 by the way and although a Z is in there I am only doing 2D things right now

here is code for calculating verticies:

float x, y;
			float cosRot = FMath.Cos(Rotation);
			float sinRot = FMath.Sin(Rotation);
			
			// Point 1 - top left
			x = Position.X - Center.X;
			y = Position.Y - Center.Y;
			vertices[0]=(float)(x*cosRot - y*sinRot);	// x0
			vertices[1]=(float)(x*sinRot + y*cosRot);	// y0
			vertices[2]=Position.Z;						// z0
			
			// Point 2 - bottom left
			x = Position.X - Center.X;
			y = (Position.Y + height) - Center.Y;
			vertices[3]=(float)(x*cosRot - y*sinRot);	// x1
			vertices[4]=(float)(x*sinRot + y*cosRot);// y1
			vertices[5]=Position.Z;						// z1
			
			// Point 3 - top right
			x = (Position.X + width) - Center.X;
			y = Position.Y - Center.Y;
			vertices[6]=(float)(x*cosRot - y*sinRot);	// x2
			vertices[7]=(float)(x*sinRot + y*cosRot);		// y2
			vertices[8]=Position.Z;							// z2
			
			// Point 4 - bottom right
			x = (Position.X + width) - Center.X;
			y = (Position.Y + height) - Center.Y;
			vertices[9]=(float)(x*cosRot - y*sinRot);	// x3
			vertices[10]=(float)(x*sinRot + y*cosRot);// y3
			vertices[11]=Position.Z;					// z3

you might want to check out this post


you can use the code in the second to last post by drzoidberg.
the rotation matrix is for 3d. but you can use it for 2d too.

I made a function like this a while ago, maybe you could use it:


    public static Vector2f[] rotate(Vector4f src, float rotation){
        Vector2f[] dst = new Vector2f[4];

        float sin = FastMath.sinf(rotation);
        float cos = FastMath.cosf(rotation);
        float wsin = sin * (src.z / 2);
        float wcos = cos * (src.z / 2);
        float hsin = sin * (src.w / 2);
        float hcos = cos * (src.w / 2);
        //x' = x*cos(t) - y*sin(t)
        //y' = x*sin(t) + y*cos(t)

        dst[0] = new Vector2f(src.x + wcos - hsin, src.y + hcos + wsin);
        dst[1] = new Vector2f(src.x - wcos - hsin, src.y + hcos - wsin);
        dst[2] = new Vector2f(src.x + wcos + hsin, src.y - hcos + wsin);
        dst[3] = new Vector2f(src.x - wcos + hsin, src.y - hcos - wsin);

        return dst;
    }